

Potential Expansion of PCS Band to Include H Block

CTIA – The Wireless Association™

Ex Parte Meeting

ET Docket No. 00-258

July 29, 2004

Outline

- Evolution of PCS Standards
- Out-of-Band Emissions (OOBE) Problem
- In-Band Problem
- Impact on Use of H Block
- Summary

Evolution of PCS Standards

PCS Band Plan

- Original PCS band plan designed to maximize spectral efficiency and minimize harmful interference.
- Close proximity of band segments provided technical challenges.
- Commission is considering adding G and H blocks, which stretches the limits of what is technically feasible.

Evolution of PCS Standards

Design Parameters to Avoid Interference

Transmit Filter Characteristics

Receive Filter Characteristics

- Industry adopted stringent equipment design parameters to limit the emissions of PCS mobiles into the mobile receive band.
- Necessary to enable duplex operations and non-interfering operations of mobiles with 1 meter separations.

Evolution of PCS Standards

Out-of-band Emissions Requirements

FCC Rules			
	dBm/MHz		
Broadband PCS	-13	24.238	
Cellular	-13	22.917(a)	
700 MHz	-13	27.53(c)(1)	
(mobile into PS band)	-13	27.53(c)(4)	
(Glonass/GPS)	-40	27.53(e)	
2.3 GHz (WCS)	-50	27.53(a)(1)	
(mobile into SDARS)	-80	27.53(a)(2)	
MSS ATC - 1995-2000 MHz	-40 → -13	25.252(c)(2)	
MSS ATC - < 1995 MHz	-40		

Industry Standards (into mobile receive band)				
(1110 111)		barra)		
	dBm/MHz			
GSM 400	-57	GSM 05.05		
GSM 850	-69	GSM 05.05		
GSM 900	-69	GSM 05.05		
GSM 1900	-61	GSM 05.05		
TDMA – 900 MHz	-65	ANSI 136-270		
TDMA – 1900 MHz	-65	ANSI 136-270		
CDMA – 800 MHz	-76	TIA/EIA-98-F		
CDMA – 1900 MHz	-76	TIA/EIA-98-F		

- Industry standards are significantly more stringent than FCC rules.
- All PCS equipment meets or exceeds industry standards.

Transmit Filter Considerations

- Transmit filter characteristics currently have 5 MHz tolerance to meet attenuation requirements
 - temperature compensation and manufacturing tolerances
- Filter attenuation of 3 dB for G band
 - Lose 3 dB in link margin
 - If compensated by higher Tx power, battery life reduced
- Filter attenuation of 8 dB for H band
 - Lose 8 dB in link margin
 - Cannot be compensated.
- 37 dB min attenuation at 1930 MHz can be attained for G band, but cannot be attained for H band.

m1 = 1912.5 MHz (G Block center freq) dB(S(2,1) = -3.0021 **m2** = 1917.5 MHz (H Block center freq) dB(S(2,1)) =-8.4160

What's Impact of Harmful Interference?

Total Cumul. Noise Floor Increase (dB)	Permitted I/N (dB)	Reduction in Coverage*	Additional Cells Required	Increase in Total Costs	
0.33	-11	5%	5%	18%	
0.5	-9	7%	8%	30%	
1	-6	13%	18%	63%	
3	0	35%	111%	390%	

^{*} Assumes "suburban" market (32 dB/dec)

Source: V-Comm, Comments to FCC, ET Docket No. 03-237, (Apr. 5, 2004)

 Modern CMRS systems can compensate for increased noise resulting from excessive OOBE, but not without significant impact on coverage, capacity and/or total network cost.

Desensitization at 1930 MHz

Bandwidth of Handset in MHz
Noise figure of Handset Receiver in dB
OOBE of Transmitting Handset (dBm/MHz)
Antenna Gain of Transmitting Handset
Antenna Gain of Receiving Handset
Effective Noise Power in dBm/MHz
Frequency of OOBE interferer in MHz

1.23	1.23	1.23	1.23
5.00	5.00	5.00	5.00
-13.00	-40.00	-70.00	-76.00
-3.00	-3.00	-3.00	-3.00
-3.00	-3.00	-3.00	-3.00
-19.00	-46.00	-76.00	-82.00
1930.00	1930.00	1930.00	1930.00

KTB Rx Noise Floor dBm	-113.10	-113.10	-113.10	-113.10
Rx Noise Floor dBm	-108.10	-108.10	-108.10	-108.10
Attenuation required for 1/3 dB desensitization Distance - 1/3 dB desensitization in meters	100.97	73.97	43.97	37.97
	1379.10	61.60	1.95	0.98
Attenuation required for 1/2 dB desensitization Distance - 1/2 dB desensitization in meters	99.14	72.14	42.14	36.14
	1117.11	49.90	1.58	0.79
Attenuation required for 1 dB desensitization Distance - 1 dB desensitization in meters	95.87	68.87	38.87	32.87
	766.6	34.2	1.1	0.5
Attenuation required for 3 dB desensitization Distance - 3 dB desensitization in meters	90.00	63.00	33.00	27.00
	390.0	17.4	0.6	0.3

Impact of Emissions into Mobile Handset Receive Band

(1 dB Desensitization)

Emission Level (dBm/MHz) - Conducted

- G and H blocks have potential to produce harmful OOBE to existing PCS operations.
- G block can meet industry standards; H block cannot.
- H block handsets would have to meet -70 dBm/MHz OOBE limit to meet 1 meter design requirement.
- -70 dBm limit is based on 1dB degradation which results in substantial impact to CMRS networks.

In-Band Problem

Receive Filter Considerations

 Proximity of H block to mobile receive band prevents receive filter from effectively attenuating in-band signal.

11

In-Band Problem

- Existing PCS mobile receive filters cannot sufficiently attenuate in-band H block emissions.
- As a result, H block mobile transmitters can overload other PCS mobile receivers.
- Impacts all existing PCS mobiles.
- Nothing can be done to solve this in-band problem.

Impact on Use of H Block

- H block not feasible for broadband PCS because it can't meet industry equipment standards.
 - Requires large and expensive filters
 - Performance degradation
- H block would be subject to harmful interference from MSS/ATC operations in adjacent band.
 - No frequency separations
 - -13 dBm OOBE limit applicable to 1995-2000 MHz band

Summary of G & H Block Issues

- Addition of G block can be accommodated.
- H block cannot be used effectively for broadband PCS.
- Commission should not license 1915-1920 / 1995-2000 MHz band for services (e.g., mobile) that would cause harmful interference to existing PCS systems.
- Commission should consider use of the band for low-power unlicensed devices or licensed services that will not cause harmful interference to PCS.